3.2.88 \(\int \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x)) \, dx\) [188]

Optimal. Leaf size=60 \[ \frac {2 i a \sqrt {e \sec (c+d x)}}{d}+\frac {2 a \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \sec (c+d x)}}{d} \]

[Out]

2*I*a*(e*sec(d*x+c))^(1/2)/d+2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),
2^(1/2))*cos(d*x+c)^(1/2)*(e*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 60, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {3567, 3856, 2720} \begin {gather*} \frac {2 a \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \sec (c+d x)}}{d}+\frac {2 i a \sqrt {e \sec (c+d x)}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Sec[c + d*x]]*(a + I*a*Tan[c + d*x]),x]

[Out]

((2*I)*a*Sqrt[e*Sec[c + d*x]])/d + (2*a*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[e*Sec[c + d*x]])/d

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3567

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*((d*Sec[
e + f*x])^m/(f*m)), x] + Dist[a, Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2
*m] || NeQ[a^2 + b^2, 0])

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x)) \, dx &=\frac {2 i a \sqrt {e \sec (c+d x)}}{d}+a \int \sqrt {e \sec (c+d x)} \, dx\\ &=\frac {2 i a \sqrt {e \sec (c+d x)}}{d}+\left (a \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 i a \sqrt {e \sec (c+d x)}}{d}+\frac {2 a \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \sec (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.22, size = 44, normalized size = 0.73 \begin {gather*} \frac {2 a \left (i+\sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right ) \sqrt {e \sec (c+d x)}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Sec[c + d*x]]*(a + I*a*Tan[c + d*x]),x]

[Out]

(2*a*(I + Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])*Sqrt[e*Sec[c + d*x]])/d

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 163 vs. \(2 (79 ) = 158\).
time = 0.92, size = 164, normalized size = 2.73

method result size
default \(\frac {2 i a \sqrt {\frac {e}{\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )\right )^{2} \left (-1+\cos \left (d x +c \right )\right )^{2} \left (\EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+\EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+1\right )}{d \sin \left (d x +c \right )^{4}}\) \(164\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

2*I*a/d*(e/cos(d*x+c))^(1/2)*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^2*(EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos
(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(
1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+1)/sin(d*x+c)^4

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c)),x, algorithm="maxima")

[Out]

e^(1/2)*integrate((I*a*tan(d*x + c) + a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 55, normalized size = 0.92 \begin {gather*} -\frac {2 \, {\left (i \, \sqrt {2} a e^{\frac {1}{2}} {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right ) - \frac {i \, \sqrt {2} a e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c + \frac {1}{2}\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c)),x, algorithm="fricas")

[Out]

-2*(I*sqrt(2)*a*e^(1/2)*weierstrassPInverse(-4, 0, e^(I*d*x + I*c)) - I*sqrt(2)*a*e^(1/2*I*d*x + 1/2*I*c + 1/2
)/sqrt(e^(2*I*d*x + 2*I*c) + 1))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} i a \left (\int \left (- i \sqrt {e \sec {\left (c + d x \right )}}\right )\, dx + \int \sqrt {e \sec {\left (c + d x \right )}} \tan {\left (c + d x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**(1/2)*(a+I*a*tan(d*x+c)),x)

[Out]

I*a*(Integral(-I*sqrt(e*sec(c + d*x)), x) + Integral(sqrt(e*sec(c + d*x))*tan(c + d*x), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)*e^(1/2)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Mupad [B]
time = 3.78, size = 40, normalized size = 0.67 \begin {gather*} \frac {2\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+1{}\mathrm {i}\right )\,\sqrt {\frac {e}{\cos \left (c+d\,x\right )}}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e/cos(c + d*x))^(1/2)*(a + a*tan(c + d*x)*1i),x)

[Out]

(2*a*(cos(c + d*x)^(1/2)*ellipticF(c/2 + (d*x)/2, 2) + 1i)*(e/cos(c + d*x))^(1/2))/d

________________________________________________________________________________________